Hermitian quadratic eigenvalue problems of restricted rank

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagonalizable Quadratic Eigenvalue Problems

A system is defined to be an n× n matrix function L(λ) = λ2M + λD +K where M, D, K ∈ Cn×n and M is nonsingular. First, a careful review is made of the possibility of direct decoupling to a diagonal (real or complex) system by applying congruence or strict equivalence transformations to L(λ). However, the main contribution is a complete description of the much wider class of systems which can be...

متن کامل

Solving the real eigenvalues of hermitian quadratic eigenvalue problems via bisection

This paper considers solving the real eigenvalues of the Quadratic Eigenvalue Problem (QEP) Q(λ)x ≡ (λM+λC+K)x = 0 in a given interval (a, b), where the coefficient matrices M , C, K are Hermitian and M is nonsingular. First, an inertia theorem for the QEP is proven, which characterizes the difference of inertia index between Hermitian matrices Q(a) and Q(b). Several useful corollaries are then...

متن کامل

Quadratic Residual Bounds for the Hermitian Eigenvalue Problem

Let A = " M R R N # and ~ A = " M 0 0 N # be Hermitian matrices. Stronger and more general O(kRk 2) bounds relating the eigen-values of A and ~ A are proved using a Schur complement technique. These results extend to singular values and to eigenvalues of non-Hermitian matrices. (1) be Hermitian matrices. Since jjA ? ~ Ajj = jjRjj one can bound the diierence between their eigenvalues in terms of...

متن کامل

Algorithms for hyperbolic quadratic eigenvalue problems

We consider the quadratic eigenvalue problem (QEP) (λ2A+λB+ C)x = 0, where A,B, and C are Hermitian with A positive definite. The QEP is called hyperbolic if (x∗Bx)2 > 4(x∗Ax)(x∗Cx) for all nonzero x ∈ Cn. We show that a relatively efficient test for hyperbolicity can be obtained by computing the eigenvalues of the QEP. A hyperbolic QEP is overdamped if B is positive definite and C is positive ...

متن کامل

Detecting and Solving Hyperbolic Quadratic Eigenvalue Problems

Hyperbolic quadratic matrix polynomials Q(λ) = λ2A + λB + C are an important class of Hermitian matrix polynomials with real eigenvalues, among which the overdamped quadratics are those with nonpositive eigenvalues. Neither the definition of overdamped nor any of the standard characterizations provides an efficient way to test if a given Q has this property. We show that a quadratically converg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 1993

ISSN: 0893-9659

DOI: 10.1016/0893-9659(93)90069-y